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1. INTRODUCTION 

In a tropical cyclone, the concentrated potential vor- 
ticity (PV) source due to heating in a circular eyewall can 
result in a reversal of the radial PV gradient, allowing the 
vortex to become barotropically unstable. In this manner an 
axisymmetric vortex can develop asymmetries, redistribute 
PV through chaotic nonlinear mixing, and eventually resym- 
metrize with a different, stable structure. Recent studies 
of this process within the framework of an unforced non- 
divergent barotropic model (Schubert et al., 1998, herein 
referred to as S98) have helped provide insight into diverse 
aspects of hurricane dynamics, including the development 
of spiral bands and mesoscale vortices, the existence of 
polygonal eyewalls, and asymmetric eye contraction. 

One approach to understanding the PV redistribution 
process is to treat it as an initial value problem. Numeri- 
cal results from nonlinear models can simulate the process 
for a limited time but cannot track the details indefinitely, 
since the PV field tends to filament, developing structure 
on increasingly finer scales that eventually cannot be re- 
solved. An alternative approach is to predict directly the 
final steady flow produced by the mixing, without simu- 
lating the time evolution of the flow. At least two ap- 
proaches have been proposed, based on minimum enstro- 
phy and maximum entropy arguments. This paper concen- 
trates on the minimum enstrophy vortex (MinEV) problem, 
generalizing previous results for the unforced nondivergent 
barotropic model and extending the analysis to the diver- 
gent barotropic (shallow water) model. 

2. NONDIVERGENT BAROTROPIC MODEL 

In the unforced nondivergent barotropic model the en- 
strophy, energy, and angular momentum are all conserved 
in inviscid axisymmetric flow. With dissipation, none of the 
three are conserved, but the energy and angular momen- 
tum typically decay much more slowly than the enstrophy. 
Thus, at least for intermediate (non-diffusive) time scales, 
the flow may be thought to evolve toward a state of min- 
imum enstrophy while conserving the energy and angular 
momentum. Starting from this "selective decay hypothesis" 
it is possible to derive the final state of the flow by vari- 
ational techniques, yielding the MinEV solutions of Leith 
(1984) and S98. In this section we extend the approach 
of S98 to include two mixing radii and to constrain both 
energy and angular momentum in the same analysis. 
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Consider an axisymmetric initial flow with tangential 
velocity vo(r) and corresponding vorticity Co = d(rvo)/rdr. 
If the flow is barotropically unstable, it may evolve through 
chaotic nonlinear mixing and asymptotically approach a 
steady final state which is again axisymmetric. We assume 
that the mixing is confined to the region 0 < a < r < b, 
and the flow outside this region is undisturbed. Denoting 
the tangential velocity and vorticity of the final state by 
v(r) and £ = d(rv)/rdr, respectively, the enstrophy excess 
of the final state is 

Z[v,a,b]:= I  i(C2-Co)rdr, 
Ja 

(1) 

where we have omitted the multiplicative constant 27r for 
convenience. The corresponding energy and angular mo- 
mentum excesses are 

E[ 'v, a, b]:=        | (v2 - vl) rdr 
Ja 

and 

A[v, a, b]:=   I   r (v — vo) rdr. 
Ja 

(2) 

(3) 

We seek v(r), a, and 6 which minimize Z[v, a, b] subject to 
the constraints 

E[v,a, b] = 0, A[v,a,b} = 0 (4) 

and the boundary conditions 

v(a) = v0(a),        v(b) = v0{b). (5) 

Using standard techniques from the calculus of vari- 
ations, we find that the first variations of the boundary 
conditions (5) are 

[C(o) - Co(a)] äa + Sv{a) = 0. 

and 

[C(b)-Co(b)]5b + 8v{b) = 0. 

Using these, we can write the first variation of Z as 

ÖZ 
- Ja 

fr8vrdr-\[ab)-Co{b)fb5b 

+ |[C(o)-Co(a)]2a5a. 

(6) 

(7) 

(8) 

The first variations of E and A are found in a similar manner 
to be 

5E f =  I   vSv 
Ja 

rdr (9) 
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and 

SA -f J a 

röv rdr, (10) 

where in both cases the boundary terms vanish due to (5). 
To derive equations for the MinEV solution, we note 

that if v, a, and b minimize Z subject to the constraints of 
constant E and A, then they also minimize the functional 

I[v, a, b] := Z[v, a, 6] + ßE[v, a, b] + jA[v, a, b],     (11) 

known as the Lagrangian, where ß and 7 are Lagrange 
multipliers. We can combine (8)-(10) with (11) to obtain 

SI =        I — — + ßv + 7r I 5v rdr 
Ja (12) 

- \ [C(6) - Co(6)]2 b8b + i [C(o) - Co(a)]2 aSa. 

Since any stationary solution must have SI = 0 for all vari- 
ations, we can obtain equations for the stationary solution 
as follows. First, consider variations for which 5a = 0 and 
Sb = 0 but Sv is otherwise arbitrary. Then SI = 0 im- 
plies that the integrand in (12) must vanish, leading to the 
Euler-Lagrange equation 

d_ 
dr 

d(rv) 
rdr 

■ ßv = 77",        a < r < b, (13) 

where we have substituted for £ in terms of v. The solu- 
tion of (13) subject to (5) may be obtained analytically in 
terms of Bessel functions and the parameters a, b, ß, and 
7. To determine these parameters, we substitute (13) into 
(12) and consider cases where Sa = 0 and Sb = 0 indepen- 
dently, concluding that the condition SI = 0 also implies 
the transversality conditions 

C(o) = Co(a), C(b) = Co(6). (14) 

The conditions (14) and the constraints (4), i.e., 

rb 

I (v2 - vl) rdr = 0, (15) 

and 
r 

r(v — vo) rdr = 0, (16) 

then give four conditions on o, 6, ß, and 7. The cases 
treated in S98 are recovered in the limit as a -+ 0 with 
ß = 0 (MinEV-M) and 7 = 0 (MinEV-E). 

To see whether the stationary solution defined by (13)- 
(16) in fact corresponds to minimum enstrophy (rather than 
a maximum or saddle point), we compute the second vari- 
ation of / (at the stationary solution), obtaining 

12 

3.     DIVERGENT BAROTROPIC MODEL 

The MinEV analysis for the axisymmetric divergent 
barotropic (shallow water) model on an /-plane parallels 
that developed above for the nondivergent model. Since 
the free surface height h is variable in this model, the key 
quantity conserved in inviscid flow is the potential vorticity 

P = 
H 

f + 
d(rv) 
rdr 

(19) 

where H is a constant reference height. We assume that 
the wind and mass fields are always in gradient balance, 
i.e., 

(/♦*)•- 
dh 
dr' 

(20) 

where g is the acceleration due to gravity. Since the po- 
tential enstrophy, mass, total energy, and absolute angu- 
lar momentum are all conserved in inviscid flow, the se- 
lective decay hypothesis suggests that the flow may evolve 
toward a state of minimum potential enstrophy while ap- 
proximately conserving the mass, absolute angular momen- 
tum, and total energy. The problem is in one sense simpler 
than the nondivergent barotropic case, since the global de- 
pendence of the mass and wind field on the potential vor- 
ticity (through the invertibility principle) implies that there 
is no "mixing radius": the problem should be treated on 
the whole domain 0 < r < 00. 

We can write the potential enstrophy, mass, total en- 
ergy, and angular momentum in deviation form as 

Z[h, v] 

M[h] 

roo 

Jo 

■-F Jo 

\(P-ffhrdr, 

(h-H)rdr, 

(21) 

(22) 

POO 

E[h, v]:= \ [v2h + g(h - H)2] rdr, (23) 

and 

/'OO 

rb(ld(Sv-\V      /        1\ 1 A[h,v]:= [rvh+yr
2(h-H)] rdr. (24) 

From (17) we conclude that for nontrivial continuous vari- 
ations 5v satisfying Sv(a) = Sv(b) = 0 we have S2I > 0, 
provided that 

ß>-&- (18) 

Thus—if the condition (18) holds—the stationary solution 
defined by (13)—(14) and (4) corresponds to a minimum of 
I and thus is indeed the minimum enstrophy vortex. 

We assume that P = f outside a bounded region (and that 
h is bounded); then it can be shown that v and h — H both 
decay like 0(e~r) as r -* 00, so each of Z, M, E, and A 
are finite. Thus, the MinEV problem is to find the flow field 
h, v in gradient balance which minimizes Z[h, v] subject to 
the constraints M[h] = M[h0], E[h,v] = E[h0,v0], and 
A[h, v] = A[ho, vo], where ho and vo specify the initial flow 
(assumed to be axisymmetric and in gradient balance). 
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Using standard techniques from the calculus of varia- 
tions we can compute the first variations of Z[h, v], M[h], 
E[h,v], and A[h,v] using (19) and (21)-(24), obtaining 

5Z=  f    \-\{P2-f)5h-H^5v\ rdr,      (25) 

roo 

5M = Shrdr, (26) 
Jo 

/■oo 

/     {[\v2+g{h-H)]5h + vh5v) rdr,     (27) 
Jo 

5E 

and 
roo 

5A = [{rv + ^fr2)5h + rh5v] rdr. 
Jo 

(28) 

To minimize Z while holding M, E, and A constant, we 
introduce the Lagrange multipliers a, ß, and 7 and seek to 
minimize the functional 

I[h, v] := Z[h, v] + aM[h] + ßE[h, v] + fA[h, v].   (29) 

Using (25)-(28) in (29) we obtain the first variation 

' -\{P2-f) + * + ß(\v2+g{h-H)) 

+ 7 (rv + | /r ) \5h rdr 

51 -f Jo 

F Jo 

rTdP     „ , 
-H — + ßvh + -yrh 

dr 
5v rdr, 

(30) 
which must vanish if I is stationary at the solution h, v. 

Before proceeding further, we note that 5v and 5h are 
not independent variations, since they are related by the 
constraint of gradient balance. We can construct a corre- 
sponding functional by multiplying (20) by an unspecified 
function /i(r) and integrating, obtaining 

G[M]:=  f° [(/+;) «-afj/x rdr. 

The corresponding first variation can be written as 

5G=f    Uf + ^^Sv + g' 
rdr 

-Oh rdr. (31) 

Since the solution h, v is assumed to be in gradient balance 
we must have 5G = 0, so we can add (31) to (30) to obtain 

51 -I 
+ 

-\{P2-f) + a + ß{\v2+g{h-HJ) 

+ 7 (rv + \fr2) + 9-^j^\5hrdr 

/       -H—+ ßvh + ^rh + (/ + — ) IM Sv rdr. 
** 0 

Since we must have 51 = 0 for the stationary solution 
h, v, we can obtain Euler-Lagrange equations from (32) as 
follows. First, since the function fi(r) was arbitrary, we can 
choose it so that the term in brackets in the first integral 
in (32) vanishes, i.e., 

rdr 
(P2-f2)-a-ß[±v2+g(h-H)] 

—7 (rv+ |/r ) . 
(33) 

Then the first integral in (32) vanishes, regardless of 5h. 
Thus, the second integral must also vanish for all variations 
5v, so we conclude that the term in brackets in that integral 
must be zero, i.e., 

H^ = ßvh + 7r/i +ff + ^j Mj (34) 

These two equations, along with the definition of P 

Hdtrv)^hP_Hfi (35) 
rdr 

and the gradient wind equation 

dh      (.     v\ .„„. 
9Tr = (/ + ;)« (36) 

form a system of ordinary differential equations to be solved 
for the four variables ß, P, v, and h. The boundary condi- 
tions on this system are 

v(0) = 0,        n(0) = 0 (37) 

(which come from examining the behavior of Taylor approx- 
imations to the solution as r —> 0) and 

lim P(r) = f, lim h{r) = H. (38) 

(32) 

Finally, the constraints on M, E, and A serve to determine 
the values of the Lagrange multipliers a, ß, and 7 in terms 
of the initial mass and velocity ho and vo- 
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